

Intrusion Detection System at Operating System Level

Po-yuan Peng
Department of Computer Science, University of Auckland

ppen007@ec.auckland.ac.nz

Abstract

This paper examines intrusion detection systems

that gather audit trails directly from operating system. It
discusses the feasibility and problems such systems may
encounter. Although each step itself in an intrusion
scenario may not necessarily differ from non-intrusive
activities, the objective of intrusion leads to distinctive
abnormal change of system state in the underlying
environment, or the unusual amount of usage/rate of
particular privileged tools, which in term leads to high
occurrence of certain sequences of system calls. Since
both are observable at system level, tracing of system
calls gives an intrusion detection system another
discriminating approach to identify anomalies and
intrusions. These intrusion detection systems are briefly
described in this paper. Furthermore it discusses
problems, advantages and limitations of this approach.

1. Introduction

Intrusion detection has always been an active

research area in the field of software security. In the three
stages of security – prevention, detection and response, it
plays an important role since it also has a direct influence
to response. As a result, an intrusion detection system has
a much broader responsibility. In fact, intrusion detection
systems are expected to incorporate the ability to carry
out a response to prevent an intrusive scenario from
succeeding any further. This type of system often
possesses the knowledge of intrusion scenarios, and is
categorized as misuse-based detection. Another type of
detection focuses on deciding of acceptable user
behaviours, which is known as anomaly-based detection.

The idea of intrusion detection exists long ago, and
is widely adopted in our everyday life. From rules of a
poker game, to the constitution of law, a set of acceptable
behaviours are defined which as a honest game player or
a lawful citizen, we should abide to. Everybody is under
certain degree of surveillance. Whenever someone
convicts a cheat in a game, or a crime, law enforcement
authority, usually the police, collects evidence. Based on
the evidence, a judge refers to the corresponding rules
and clause breached and determines the appropriate
punishment. Each case is recorded for future reference.
Although the world of software security is nowhere like
ours, the procedure does not differ by much. Activities
are recorded and a detection unit looks into these records
for a possible breach of security. A response unit
determines the severity of the intrusion and takes the
responding action. Just as our law system makes mistake

sometime and does not catch all who breaks the law, an
intrusion detection system is hardly perfect. False alarms,
also referred as false positives can arise frequently and
directly challenges the reliability of an intrusion
detection system. False negatives can be causing damage
to the system while an intrusion detection system is
unaware of it.

The recording of activities itself can form a research
topic. Considerations include what to be recorded, how
much detail should be recorded, how the logged
information will be used, defining a universal recording
format and programming interface for portability across
areas of system. Event Monitoring Enabling Responses
to Anomalous Live Disturbances (EMERALD) is an
example of monitoring at multiple levels. It collects data
from tree different levels: service, domain and enterprise.
In [1] the author John McHugh gives this approach a
very high hope. Despite its ability to assimilate and
correlate trails, and the potential to discover coordinated
or distributed intrusions in a large loosely coupled
enterprise network, the complexity involved to define
and administrate the recorded data is relatively high.
Perhaps we can try to look at the problem from a
different perspective: instead of detecting intrusions from
user behaviours, detect them from system behaviours. In
1995, Stat Transition Analysis Tool (STAT) has been
proposed in [2]. In their UNIX prototype of STAT
(USTAT), it collects audit trails from UNIX system calls.
Later in 1998, Steven A. Hofmeyr el al in [3] proposed a
way to apply anomaly-based intrusion detection
approach using system calls as audit trails, too. Both
have experimented the feasibility with their prototype
system, and suggest the possibility of positioning an
intrusion detection system at the operating system level.

In this paper, section 2 briefly talks about the
general intrusion detection approaches used in various
implementations. Section 3 describes into details how
these approaches can be achieved at operating system
level. The difficulties and problems are addressed in
section 4. Section 5 summaries the paper and gives how
this approach can help in intrusion detection.

2. Background

In order to surveillance user activities, their

resultant events are necessarily recorded by applications
such as apache web server, ftp daemon, secured shell
login server… etc, and parts of the operating system for
events like “file not found”, “insufficient permission”,
“I/O error” and many other low level error messages.
Most host-based intrusion detection systems obtain audit

trails from a logging facility, like the syslogd which
collects data from various sources including the ones
mentioned above. However many question about logging
remains unanswered. For example what kind of events
should be recorded? How much detail will be enough?
These two questions will determine the quantity and
quality of the logged data, therefore have a direct
influence to the discriminability of an intrusion detection
system. How the logged information will be used
suggests a better and more efficient format of logged
data and logging interface. With a standard format it is
possible to optimise for better efficiency and portability
across different areas in the system. A standard interface
encourages programmers to utilize the logging facility
and hence enhances the sensitivity of the intrusion
detection system. Although it may be easy to unify the
interface to the logging facility, standardizing the format
is non-trivial due to the wide varieties of purposes from
applications and portions of system it covers.

Many intrusion detection systems have already
existed for years. Based on the way they detect intrusions,
we can generalize them into two main abstract categories:
anomaly-based detection and misuse-based detection.
From there we can further divide, depending on their
distinctive approaches to the problem in practice.
However none of the approaches alone is sufficient to
detect all intrusions. Thus a typical intrusion detection
system employs several different approaches to
overcome the particular weakness in each one.

2.1 Anomaly-based detection

Based on the assumption that an intrusion must

differ from normal activities, anomaly-based detection
observes the difference between a given activity and a set
of normal activities. Such detection tries to characterize
an activity as normal through a set of profiles, which are
characterizations of acceptable behaviours. The idea
came with long history and was well adopted in the
earlier intrusion detection systems.

Depending on the definition of acceptable
behaviours, there are several distinctive detections. These
include using summary statistics and rules about
behaviours. Summary statistics defines a threshold and
counts the occurrence of events. If an event observed has
an abnormal rate of occurrence, it is believed to be
abnormal and is causing concerns. Defining rules about
acceptable behaviours is not only troublesome but
difficult to conduct as well. It will require training data,
which leads to another area of research. Such difficulties
include comprehensiveness and correctness of data.
Training data has to be comprehensive in order to cover
all the normal behaviours. Failing to do so will cause
some activities being identified as an intrusion, resulting
in false alarms or false positives. The correctness of
training data is essential because it is the only reference
to determine an intrusion. If the correctness of training
data is not guaranteed, then an intrusive activity may be
classified as normal, creating false negatives.

Another assumption people usually make with
anomaly-based detection is that the more different
something is away from normal, the more likely an
intrusion it is. However, except the case of summary

statistics, it is often difficult to design a reasonable
measure to determine the magnitude of anomaly and
prove the reliability of the measure, thus difficult to
implement in practice.

The advantage of anomaly-based detection lies on
the ability to point out novel intrusions. However the
necessity of training data pulls the performance of
anomaly-based detection away from ideal.
Anomaly-based detection usually has little information
about an intrusion and can hardly counter-act as a
response upon discovery of any intrusion.

Multics Intrusion Detection and Alerting System
(MIDAS) and Network Anomaly Detection and Intrusion
Report (NADIR) employ summary statistics in their
anomaly-based detection. Intrusion Detection Expert
System (IDES) and Wisdom and Sense (W&S) use
rule-based anomaly detection approach as part of their
detection.

2.2 Misuse-based detection

Instead of defining what normal is, another natural

approach is to have an expert system and define what
intrusions are. Misuse-based detection typically consists
of a collection of patterns from all known intrusive
activities. The exact method ranges from simple pattern
matching to higher level of intrusion scenario models.

Pattern matching is commonly used in
network-based detection. It identifies an intrusion by
looking for particular signatures in audit trails. However
derivative of intrusions can easily bypass this kind of
detection with a slight modification. To address this type
of issues, some intrusion detection systems introduce an
abstract model to represent an intrusion scenario. This
kind of intrusion detection is also known model-based
detection. Since a model-based detection describes
intrusion scenarios, it is considered under the generality
of misuse-based detection approach. An intrusion
scenario may consist of many steps. If the intrusion
detection system is well aware of the steps required
towards the success of an intrusion, it can prevent an
intrusion from succeeding the next step upon detection
and confirmation.

 Misuse-based detection provides a strong
indication of any possible intrusion. Another reason why
many intrusion detection systems incorporate this as part
of their detection scheme is the detailed information if
has about the detected intrusion. Using misuse-based
detection it is easy to provide a scenario with name and
description, aiding the security officer or even the
intrusion detection system itself to take the appropriate
action against the attack. As the concept of misuse-based
detection suggests, it can only reliably detect known
intrusions. Although derivatives may be picked up by
proper definition of intrusion, the general principle does
not apply to novel intrusions.

NADIR, IDES and W&S all use misuse-based
detection as part of their detection scheme. In fact these
intrusion detection systems use a combination of
anomaly-based and misuse-based approaches to
complement the weakness in one another.

3. Approaches using system calls

A computer program is a set of instructions

describing how a task is performed. Unlike humans,
these programs are expected to be stable. Being stable
we mean given the any input, the produced result will
always be the same, due to the identical execution path in
the process. In contrast, humans tend to do the same
thing differently from time to time, which makes
defining normal behaviours relatively difficult. Based on
this idea, if an intrusion detection system examines the
behaviour of a process (which is a running copy of a
program), it can detect intrusions with better precision
and distinguish between normal and anomaly with
reduced fuzziness.

The thought of using system calls as audit records
has been there for long. At the advantageous side it
addresses most of problems of defining a good logging
facility. For example, the linux kernel of version 2.4.20
uses 252 system calls. Although the exact number varies
from one operating system to another, the number of
system calls is finite. In fact, we will only be interested
in a subset of system calls, which have an direct
influence to security, such as create, read, write, execute,
change permission, change ownership… etc. Thus it
simplifies the choice of events to record. Detail level is
limited to the parameters passed into the call. The format
is consistent. In fact, all the system calls are accessed
with the same interface deep inside the kernel.

In the modern design of operating system, the
kernel is usually modular. The trend has evolved from
earliest monopoly, where everything is compiled as a
whole, to modular and micro kernel. The latter produces
a much smaller consisting of essential functionalities and
benefits from a reduced loading time less required
storage, and dynamic extensibility of functionality. A
module can be attached and detached from the kernel and
thus can be later loaded from a separate storage.
However it is the extensibility that benefits this approach
of intrusion detection most. An auditing module can be
written as an extension to the kernel and provide the
intrusion detection system the data it needs. Since this
module is part of the kernel, it can access essential
information in the operating system easily, allowing an
intrusion detection system to capture events in the
system resulted from any process.

Once an intrusion detection system has identified an
intrusion, it may decide to counter-act against that
particular intrusion scenario. At this moment it may
suggest that the next essential system call in the intrusion
scenario shall fail. In this case the module will have to
block the system calls and deny calls from particular
process. Undoubtedly in the benefit of added
functionality, this pays a price of increased complexity.

Not all detections mentioned in the previous section
work well with this approach. Summary statistics
anomaly-based detection for example, may fail miserably
if one simply records the occurrence of a particular
system call without considering the context. Recording
the occurrence of sequences of system call leads to a
large number of possible combinations, such as 4010 with
sequences of length 10. To monitor different processes
one must have multiple copies of these counters. Another

problem arises when trying to define a threshold for a
particular (sequence of) system call. How many times
read() are called in one minute can be considered as
abnormal? It could well be a database server trying to
answer hundreds of queries simultaneously during the
peak hour. There is little to claim when looking at the
frequency that a particular system call occurs.

3.1 Profile-based Anomaly Detection

In 1998 an anomaly-based detection approach using

sequences of system calls has been proposed in [3]. They
define normal as short sequences of system calls. The
parameters passed to system calls are omitted for
simplicity. The detection consists of two main stages:
profiling normal behaviours and detecting anomalies. In
the profiling stage, training data is collected. This data is
then used in the detecting stage.

To evaluate the feasibility, it tests the approach with
both synthetic data and real data. The experiment with
real data focuses with lpr, a popular printing service in
UNIX and is conducted at both Massachusetts Institute
of Technology’s Artificial Intelligence laboratory and
University of New Mexico’s Computer Science
Department. Hence there are different environments to
be able to compare against. The expected rate of false
alarms is very impressive, about 1%, calculated using the
bootstrap technique. Although the experiment is not very
comprehensive, the extremely low false alarm rate
suggests this approach to be very accurate in detecting
anomalies.

The following sub-sections describe the main ideas
of the procedures. For more detailed information
especially on the setting and condition of their
experiments, readers are suggested to read [3].

3.1.1 Profiling normal behaviours

Since this approach uses short sequences of system

calls to define normal behaviours, the purpose of
establishing profiles is simply to gather all possible
sequences of system calls that a process can generate.
However in [3] they make a important claim:

“We make a clear distinction here between

normal and legal behavior … because our
approach is based upon the assumption that
normal behavior forms only a subset of the
possible legal execution paths through a program,
and unusual behavior that deviates from these
normal paths signifies an intrusion or some other
undesirable condition. We want to be able to
detect not only intrusions, but also unusual
conditions that are indicative of system
problems.”

It is natural to expect a small number of distinctive

execution paths from a process in its normal operating
conditions. These execution paths result in constant
sequences of system calls, which can be used to
determine normal. In here, they scan traces of system
calls and obtain sequences from several executions. Each
sequence is broken into several smaller sub-sequences

with constant length. Figure 1 illustrates an example of
sequences of length 3.

Figure 1: sequences of 3 system calls

The idea is simply that in order to allow this long

sequence, each sub-sequence must also be allowed.
Notice the last sub-sequence is identical as sub-sequence
#1 and hence not added. It is meaningless to allow
duplications of the same sub-sequence in the database.
These sub-sequences form the database of normal. They
are used as the reference to determine unusual
behaviours. In section 3.1, we refer k as the length of
each sub-sequence. Although there is not much
restriction to the choice of k, it should be neither too
small nor too large. If k is too small, the sequence will
fail to capture distinctive features of a process, causing a
majority of activities to be covered, hence false negatives.
If k is too large, each sequence becomes too specific
such that an execution path may have different sequences
under slightly different condition. It becomes difficult to
comprehend the domain of normal, and introduces false
positives or false alarms. The size of database is O(nk),
where n is the number of distinctive sub-sequences. In
Figure 1, n=4 and k=3. Because each system call will be
looked up in the database, it is desirable to arrange in a
tree and use as a dictionary. This will not only save the
storage, but speed up the look up process as well.

After the structure of the profile is defined, here
comes the inevitable – collection of training data. In [3]
there is an in-depth discussion on the synthetic data.
Since earlier in this section we have claimed that the
purpose is to pick up abnormal rather than illegal
behaviours, synthetic data only becomes interesting
when experimenting with the feasibility and performance.
Strictly speaking, real data is easy to obtain. Simply turn
on the monitor and at the end of day you have a
truckload of data. However it is the quality of data that is
difficult to maintain. Imagine that during the training
process, someone deliberately feeds the system with
intrusions. Because it is only collecting data, the
intrusion detection system is not operational at this stage
to pick up these intrusions. Once the training is done,
such intrusions will be matched as normal and accepted
happily by the intrusion detection system, resulting in
false negatives. The comprehensiveness of training data
is another important consideration. If the training fails to
include a scenario that is occasional but normal, such
scenario will give rise of false alarms in the future. [3]

suggests two possible solutions to obtain a high quality
training data:

“Collect normal in the real, open

environment, whilst monitoring the environment
very carefully to ensure that no intrusions have
happened during our collection of normal.”

“Collect normal in an isolated environment

where we are sure no intrusions can happen.”

The problem with the second approach is obvious.

An isolated environment may not represent the real
environment faithfully. Although it is guaranteed to be
intrusion free, the lack of completeness gives a higher
false alarm rate. The first approach requires either
experts to examine the log or a security officer to
surveillance user activities during the training period.
Still, it is both time consuming and subject to
human-errors. In [3] they use this approach of
monitoring user activities to gather the necessary training
data for testing and evaluation.

3.1.2 Detecting anomalies

With a database of normal ready, an intrusion

detection system can then compare a sequence of system
calls captured against these profiles. Of course, the
sequence captured will be broken into parts of length k
before comparison. If a match is found, then this process
is considered to be normal so far. When there is no match
to the captured sequence, we would like to establish
some method of telling the level of suspicion.

Defining a proper measure of difference is
non-trivial. This indication should reflect to the logical
difference from the most similar sequence and suggest
the possibility of being an intrusion. The Hamming
distance is chosen in [3] to be the measurement of
difference between two sequences. Simply put, it is the
number of mismatched locations. Since the sequence is
of length k, this measurement produces a number
between 0 and k inclusively. It is difficult to justify
whether this is a proper measurement. In fact, there is no
proof of the righteousness of this measurement. However
it is meaningful to some extend and allows us to peek the
difference in a measurable way. Until we find another
finer measurement, the Hamming distance is used for
now. Figure 2 shows a simple Hamming distance
measurement.

Figure 2: Hamming distance

Computing whether or not a sequence is normal is

open, read, mmap, mmap, open, read mmap

#1

#2

#3

#1: open, read, mmap
#2: read mmap, mmap
#3: mmap, mmap, open
#4: mmap, open, read

open, read, mmap, mmap

mmap, read, close, mmap

2 mismatches
Thus Hamming distance d = 2.

relatively cheap. If a tree structure is used in the database,
the worse case of finding a match (or mismatch) is
number of system calls N× k comparisons. However
since we describe the magnitude of anomaly by the
difference from the most similar normal behaviour, for
each captured sub-sequence we need to break into
sub-sequences of length k, compare against each
sequence in the database and obtain the smallest
difference measured by the Hamming distance. This is
equivalent as determining the minimum value across
comparison against each normal sequence. The strongest
indication in these sub-sequences represents the degree
of anomaly. In [3], this value is referred as the signal of
anomaly, SA.

Let X be the set of sub-sequences of system calls
captured by the system in a particular process.
Let Y be the set of sub-sequences of system calls
defined in the database.
Let d(x,y) denote the Hamming distance between
two sequences x and y, then:

SA = ∀ x∈X: max(∀ y∈Y: min(d(x,y)))

Up to this moment, all the measurements are

dependent to k, the length of each sequence in the
database. Undoubtedly the number of mismatches will
increase, as k becomes larger. This restricts us to make
comparisons within the same value of k. In order to have
a measurement independent to the length of sequence k,
the mismatch percentage is introduced. Let’s call it S,
which is simply SA / k.

S = SA / k

Now we have the signal of anomaly. We can define

a threshold to discriminate anomalies from normal. Let’s
use C to denote the threshold in detecting anomaly,
where 1 ≤ C ≤ k. Notice we define C as an integer
since it is mainly used in the detection, where the
database consists of sequences of fixed length k.
Therefore we can check SA against C in a faster integer
operations. We could use C as a mismatch percentage,
but it will require a division to be performed for every S
= SA / k. By definition, a process is considered to be
abnormal when SA ≥ C. C = 0 is meaningless, and
hence C is bounded by 1 and k. Therefore we have the
following two cases.

Normal: 0 ≤ SA < C ≤ k
Abnormal: 1 ≤ C ≤ SA ≤ k

Is this discrimination powerful enough? Perhaps not

for human behaviours which migrate and deviate all the
time. But for a hard-coded program its behaviour is
limited in general and can hardly change. The
environment and runtime conditions may steer the exact
execution path in a process, however these execution
paths are usually finite and we are capable of
enumerating each one of them under common conditions.
On the bright side, this approach is able to pinpoint the
source process of an intrusion accurately. One very

effective use of this approach is the detection against
buffer-overflow attacks. This type of intrusions
introduces new code and hence new behaviours to be
picked up. Unfortunately as all anomaly-based detections
suffer from, this approach can hardly tell the type of
intrusion upon any successful detection. The introduction
of system calls complicates the reasoning of an intrusion.
Imagine a security officer facing a bunch of system calls
such as open, read, read, mmap. Security officers may
have the source of intrusion, however they have to
investigate before knowing what is going on. For
example, a buffer-overflow attack may have taken place
in an http server. The security officers are informed but
have no idea whether this intrusion is a buffer-overflow
attack or not. They have to investigate this http server
before they can conclude that it is a buffer-overflow
attack on the http server.

3.2 State Transition Analysis Tool

State Transition Analysis Tool uses a misuse-based

detection approach to model an intrusion scenario. It
breaks down an intrusion scenario into many states. The
initial state is the system state prior to an intrusion and
the compromise state is the state after a successful
intrusion has taken place. Between two states there is an
action which causes the change of system state from one
to another. There must exist a sequence of states, from
the initial to the compromised, where the system meets
the initial state and the action in between is each
successful in order for the intrusion scenario to succeed.
Together these form a State Transition Diagram that is
used to describe an intrusion scenario. In the paper [2]
they use the term penetration as a successful intrusion
scenario.

Based on the use of states to describe a scenario,
STAT makes the assumption of following two features in
all penetrations, quoted directly from [2].

“Penetrations require the attacker to posses

some minimum prerequisite access to the target
system.”

“All penetrations lead to the acquisition of

some previously unheld ability.”

The first feature supports the idea of identifying the

requirement, which is the initial state. The second feature
suggests that there is a difference between the initial state
and the compromised state, and hence detectable. After
seeing a scenario as a whole, STAT begins to break it
into critical steps. Essential states throughout the
scenario are identified and the action responsible for
state change is determined.

One of the main advantages of STAT is the use of
State Transition Diagram to model an intrusion scenario.
This presents the scenario in a visualizing manner, hence
provides better understanding and analysis. Such a model
makes STAT a misuse-based detection that deviates from
traditional one-to-one direct and static relationship
between rules and audit trails. The model may be static
but the actual subjects, for example the particular file
under attack, can be determined dynamically and applied

to the general model. One model can thus be used to
monitor multiple instances of an intrusion simultaneously,
e.g. multiple attacks on several “SUIDROOT” files
based on using the same trick of buffer-overflow. The
updating of database in a rule-based detection often
requires experienced technicians to plug in the new
formula. Whereas with STAT, local security officers can
study, draw the diagram and analyse new intrusion
scenarios. Once the description boils down to a set of
requirements and effects, essential actions can be
determined and this information can be taken into STAT.
Thus a methodology is available for creating new rules in
STAT.

3.2.1 State Transition Diagrams

STAT uses State Transition Diagrams to describe an

intrusion scenario in an abstract but precise and
visualizing manner. These diagrams reflect to the
essential concepts of STAT. Its visual representation
provides better understanding, clear requirement and
consequence of an intrusion scenario. Based on this
information, STAT has the ability to prevent an attacker
advancing towards a successful penetration.

A State Transition Diagram usually begins with only
two or a few more states. The initial state corresponds to
the requirements of the intrusion scenario. The
compromised state represents the effect on the system
once the intrusion has succeeded. Each state is
considered as a node in a directed graph. An action is
responsible for transition between states, i.e. a change of
state. In a directed graph, actions are drawn as edges
linking states. Refined with details, this directed graph
becomes a State Transition Diagram. On page 6 of [2]
there is an example of an attack taking advantage of the
fact that this earlier mail program changes the ownership
of the mailbox file (/usr/spool/mail/root in this example)
without checking whether the file has set user id
permission enabled. If an attacker can write in this
directory (/usr/spool/mail), he/she can fabricate
/usr/spool/mail/root by copying a shell program. When
an e-mail is sent to the user root, mail realizes a mailbox
already exists but with a wrong owner. It changes the
owner to the recipient which is root and appends the new
mail. The attacker will then have a shell that has root
privilege upon execution. Figure 3 from [2] clearly
illustrates this example in a State Transition Diagram.

Figure 3: An example of State Transition Diagram.

For an intrusion to succeed, the initial state (i.e. the

requirements) must be met. Then, there must be a path
from the initial state to the compromised state, where

each edge corresponds to a feasible action. The length of
the path gives some indication about the complexity of
the intrusion. The more complex an intrusion is, the more
chances it can fail. A short path would suggest an
immediate threat since we have a very limited possibility
of stopping it. In the previous example there are only 4
states and 3 actions. If the initial state is met, an intrusion
can advance to the next state SC-2 leaving us only two
more actions where we can prevent this intrusion from
being successful. Sometimes a scenario may consist of
several alternatives, resulting in multiple paths from the
initial state to the compromised state. For example there
may be two system states in the intrusion scenario A and
B, where the order is irrelevant. As shown in Figure 4,
we can make each branch a separate scenario. Thus we
can now safely consider diagrams with only a single
path.

Figure 4: Separated paths for branches.

In order to optimise the use of STAT to catch

mutants of a known intrusion, the State Transition
Diagram should only describe the essential states. In this
example how the attack creates the e-mail can vary. The
process of creation of e-mail does not cause any threat to
the system. Thus a proper diagram should not introduce
additional states to model this process.

4. Discussion

Working with audit trails directly from system level

has its pros and cons. We first look at the possible
problems and then discuss about the benefits and
limitation.

4.1 Problems with System Calls

With this approach we have to be very careful since

it introduces many operating system or architecture
specific problems, such as reduced system performance,
compatibility, monitoring of states and race conditions.
Each is discussed in more detail in the following.

4.1.1 Reduced System Performance

One obvious problem is the impact on system

SI

SA

SA

SB

SB

SC

SI

Separate branches:

SI

SA

SA

SB

SB

SC

SC

performance. Almost all processes make system calls in
their lifecycle. Common program behaviours like reading
a file or creating a process involve open, read, fork and
other system calls. The module that collects trails
introduces additional overheads in the handling of
system calls, causing system calls to return slower and
thus a reduced system performance.

For a better security it may be desirable to block the
process, let the intrusion detection system inspect the
current system call and decide whether it should be
allowed to execute. The “Janus” system in Tal
Garfinkel’s paper [4] is an example of such. If we intend
to block these system calls, then a process that uses
system calls may have to halt before a decision from
intrusion detection system is made. This phenomenon
can quickly become very serious when frequent system
calls are made, such as a database manager with frequent
reading and seeking in large files.

As a result, the impact on system performance may
indicate an exclusion of I/O intensive applications such
as SQL database and http server from this approach.

4.1.2 Compatibility

Here the compatibility means whether an existing

intrusion detection system will still work under different
conditions. There are two aspects I focus on: across
different operating systems, and across different
versions.

We have seen so far many common system calls
typically used in a UNIX operating system. Many of the
UNIX clones share similar properties and interface, thus
makes the porting of an implementation from one
operating system to another a lot easier. However the
kernel module involved severely reduces the
compatibility of this approach. For each different kernel
architecture, a specific module has to be written in order
to collect the trails. Some operating system has quite a
significant difference between major versions, such as
Linux. Although this dependency on kernel architecture
results a poor compatibility, the variety of server
platforms is much less. It is possible to select few
popular solutions to build the implementation based on.

Once a while software vendors release an update or
a patch to fix known bugs in their product. Vendors will
strongly encourage their users to update if there is a
security fix against any flaw. Once a program is updated,
new behaviours may be introduced and exhibited at
runtime. At this point it may require training data to be
collected again, since the old profile can no longer be
used to describe the new behaviours. Or even worse, the
difference may be initially unnoticeable when someone
has experimented a little with the old profile. Based on
that observation, system administrators and security
officers may decide to not to go through the collection of
training data again and reuse the old profile. When false
positives occur due to the introduction of new code, they
end up spending more frustrating time analysing. The
collection of training data is always time-consuming and
painful but unfortunately a necessary procedure. In order
for this approach to be practical in general, the inevitable
collection of training data must be able to be done in a
cheaper, more efficient manner.

4.1.2 Monitoring of State

A very famous phrase in UNIX is “there is more

than one way to do things.” Indeed in UNIX, many
distinct sequences of actions can be used to achieve the
same goal. This holds particularly true for intrusion
scenarios.

Recall that this approach mainly uses sequences of
system calls in order to detect an intrusion. The
sequences of system calls are generated as the attacker
performs sequences of actions. Although we are
seemingly capturing these actions, the ultimate goal is to
reconstruct the system state, so that we know how far an
attacker has progressed in the intrusion scenario. Actions
provide a clue, not the solution. It is important to capture
all actions that can influence the system state. Therefore
the coverage of system calls to capture should be
carefully considered.

A very clear example is given in [4]. In most
operating system, files are handled through a table of
descriptions. When a file is opened, its details such as
path, size, permission and ownership are recorded in an
entry of the table. The entry number is returned as a file
descriptor and used as the key for later access by
programs. dup2(a,b) is a function that duplicates entry a
to entry b. If the intrusion detection system fails to
capture the effects on this function, it is not monitoring
the system state correctly. The example of intrusion in
the mail program is modelled efficiently in STAT[2].
Suppose that it includes a verbose check of writing to file
/usr/spool/mail/root. An attacker can go around that step
of detection if dup2() is not captured.

5 = open(“/usr/spool/mail/root”, …)
The attacker opens the
sensitive file, captured
and monitored by IDS.

6 = open(“/tmp/legalfile”,..)
The attacker opens another
file captured but not
monitored by IDS.

dup2(5, 6)
IDS has no idea of the duplication of file
descriptor so that both 5 and 6 are now for
/usr/spool/mail/root.

write(6, ….)
IDS believes the attacker is writing to the
file /tmp/legalfile, while
/usr/spool/mail/root is actually written.

As a result, STAT will believe that the file

/usr/spool/mail/root is never written and thus fail to
detect this attack.

Similar problems arise when handling paths and
links carelessly. In many operating systems, both
absolute and relative paths are commonly used. It is
crucial to determine the correct entity in order to conduct
a correct detection. Links need to be taken care of too,
since it provides an alternative mean to access files
indirectly.

4.1.3 Race Condition

There are situations where the intrusion detection

system needs to perform a counteraction based on a
detection of vulnerability. Since the main body of an
intrusion detection system resides in user space, a
context-switch may occur and the execution is passed on
to another process. At this moment, the executed process
may be able to take advantage of the vulnerability while
the intrusion detection system is in dormancy. For
example, considering the apache web server. It allows
administrator to specify a plain text file containing the
login and password for accessing a specific directory.
Suppose it is configured that if the login/password file
“passwd “exists in a directory, the server allows only
those with login name and password in this file to enter.
If the administrator carelessly produces this file without
setting the permission first, it may be set to default which
is readable by everyone. Now the intrusion detection
system detects an intrusion of “passwd” being world
readable. It immediately fires a counteraction to correct
the permission. However a context-switch may occur in
this gap and cause this counteraction to be suspended.
The file remains world readable, and the process that just
gets executed can read everyone’s login and password.

Race condition gets worse when multiple threads
are involved. Since a thread is a lightweight copy of
process, a lot of properties are shared between threads of
the same group. For example two threads of the same
program share the same working directory, thus if thread
A changes the current directory to /tmp, thread B will be
working relative to /tmp as well. This introduces another
example of race condition as given in section 4.3.4 in [4].
However I question the validity of this example since
like all intrusion detection system should be, Janus is
supposed to add another layer of security, not replacing
existing mechanism. The file /etc/shadow contains all
encrypted passwords and is usually readable and writable
only to root in most UNIX systems. Therefore
/etc/shadow should remain unreadable since the call to
open() will cause a security violation in the operating
system. The approval of Janus should not override the
underlying security mechanism in the operating system.

4.2 Strength

Operating intrusion detection system at system level

has several benefits. First it is more reliable, since
instead of observing human behaviours, process
behaviours are being monitored. Second it is more
applicable to low-end computer systems. STAT relies
heavily on system calls to indicate a change of state and
has many advantages compared to other misuse-based
detection approaches.

Taking advantage of the stability in program
behaviours, the anomaly-based intrusion detection shows
a relatively low rate of false alarms and thus more
reliable. It also enables us to define a rough measure to
determine the extend of anomaly. The result in the
experiment of [3] is very successful. The false positive
they observed is estimated one out of a hundred.
However this may still be insufficient to prove the
effectiveness of this approach, especially in situation
where the system is under extreme stress, causing
exceptional conditions and behaviours.

This approach collects audit trails from operating

system. It applies to all processes without having each
process being specifically designed to give the required
information. Therefore it is more practical for a
host-based solution of intrusion detection system. This is
favours many of low-end computer systems because
buying software designed to feature a particular logging
interface is then unnecessary. Imagine the need of
spending $10,000 more so that your SQL database
supports the logging facility of EMERALD.

STAT benefits a lot from using system calls. Not
only it can detect multiple instances of the same intrusion
scenario, using system calls enables it to detect intrusions
through collaboration and multiple sessions.
Collaboration can be picked up, since STAT concerns
only about the system state. Because each process has
the ability to alter the system state in some way, STAT
does not distinguish between processes in particular.
Thus its intrusion scenario is applicable to detect
intrusions across multiple processes. It is applicable to
detect across multiple sessions, too. Since the system
state remains after one session ends, coordinating an
attack across several sessions makes no difference in
detecting. More ever, STAT contains the sequence of
actions about an intrusion scenario. It can issue a
response to an ongoing intrusion and effectively prevent
the system from being compromised.

4.3 Limitation

While this approach opens its favourite area in

intrusion detection, it is also limited by the nature of its
audit trails – system calls. The limitation is mainly due to
the lack of high-level information.

First it gives very little information about the
attacker. For example if an anomaly-based detection
found an attempt of buffer-overflow attack, it still has no
idea where the source of the attack is based on the audit
trails it collects. The information is simply not at the
same level.

Many attacks visible in human behaviours cannot be
picked up. For example it cannot detect a masquerader,
who pretends to be another person. Nor can it detect the
leakage by legitimate user, described in [1].

5. Conclusion

Intrusion detection system at operating system level

is definite a feasible solution. As we have already seen, it
has the benefit of being very reliable, effective and
efficient in detecting its domain of intrusions. Intrusion
detection systems such as STAT are developed based on
this approach and exhibits several significant advantages.
By adopting this approach the anomaly-based rule-based
detection in [3] also shows an impressive low rate of
false positives. The significance of this approach is
unquestionable.

“No intrusion detection approach stands alone as a

catch-all for computer penetrations.”

This phrase is quoted from [2] and expresses the

heart of this paper brilliantly. Once outside the domain of
this approach, it is hardly useful at all. As discussed in

section 4.3, it cannot detect possible intrusions in many
human behaviours. Even if an intrusion is detected, there
is little high-level information that can help us to
understand about the situation.

Nevertheless each approach has its advantages and
disadvantages. More importantly there are situations
where one is more preferable than another. It is therefore
approaches from different angles need to be studied in
order to complement the weakness found in others. As
John McHugh suggests in his writing [1], intrusion
detection systems should collect audit trials from
different hierarchical levels, providing ability to “collect,
assimilate, correlate, and analyze information emanating
from diverse sources in real-time” in order to cope with
more sophisticated attacks.

Bibliographic

[1] John McHugh, “Intrusion and Intrusion Detection,”

International Journal of Information Security 1,
2001, pp. 14-35.

[2] K. Ilgun, R.A. Kemmerer, and P.A. Porras, "State
Transition Analysis: A Rule-Based Intrusion
Detection Approach," IEEE Transaction on Software
Engineering, 21(3), March 1995.

[3] Steven .A. Hofmeyr, S. Forrest, and A. Somayaji,
“Intrusion Detection using Sequences of System
Calls," Journal of Computer Security, August 1998

[4] Tal Garfinkel, “Traps and Pitfalls: Practical
Problems in System Call Interposition Based
Security Tools,” In proceedings of the ISOC
Symposium on Networks and Distributed System
Security, Feb 2003.

