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Abstract 

 
This paper examines intrusion detection systems 

that gather audit trails directly from operating system. It 
discusses the feasibility and problems such systems may 
encounter. Although each step itself in an intrusion 
scenario may not necessarily differ from non-intrusive 
activities, the objective of intrusion leads to distinctive 
abnormal change of system state in the underlying 
environment, or the unusual amount of usage/rate of 
particular privileged tools, which in term leads to high 
occurrence of certain sequences of system calls. Since 
both are observable at system level, tracing of system 
calls gives an intrusion detection system another 
discriminating approach to identify anomalies and 
intrusions. These intrusion detection systems are briefly 
described in this paper. Furthermore it discusses 
problems, advantages and limitations of this approach. 

 
1. Introduction 

 
Intrusion detection has always been an active 

research area in the field of software security. In the three 
stages of security – prevention, detection and response, it 
plays an important role since it also has a direct influence 
to response. As a result, an intrusion detection system has 
a much broader responsibility. In fact, intrusion detection 
systems are expected to incorporate the ability to carry 
out a response to prevent an intrusive scenario from 
succeeding any further. This type of system often 
possesses the knowledge of intrusion scenarios, and is 
categorized as misuse-based detection. Another type of 
detection focuses on deciding of acceptable user 
behaviours, which is known as anomaly-based detection. 

The idea of intrusion detection exists long ago, and 
is widely adopted in our everyday life. From rules of a 
poker game, to the constitution of law, a set of acceptable 
behaviours are defined which as a honest game player or 
a lawful citizen, we should abide to. Everybody is under 
certain degree of surveillance. Whenever someone 
convicts a cheat in a game, or a crime, law enforcement 
authority, usually the police, collects evidence. Based on 
the evidence, a judge refers to the corresponding rules 
and clause breached and determines the appropriate 
punishment. Each case is recorded for future reference. 
Although the world of software security is nowhere like 
ours, the procedure does not differ by much. Activities 
are recorded and a detection unit looks into these records 
for a possible breach of security. A response unit 
determines the severity of the intrusion and takes the 
responding action. Just as our law system makes mistake 

sometime and does not catch all who breaks the law, an 
intrusion detection system is hardly perfect. False alarms, 
also referred as false positives can arise frequently and 
directly challenges the reliability of an intrusion 
detection system. False negatives can be causing damage 
to the system while an intrusion detection system is 
unaware of it. 

The recording of activities itself can form a research 
topic. Considerations include what to be recorded, how 
much detail should be recorded, how the logged 
information will be used, defining a universal recording 
format and programming interface for portability across 
areas of system. Event Monitoring Enabling Responses 
to Anomalous Live Disturbances (EMERALD) is an 
example of monitoring at multiple levels. It collects data 
from tree different levels: service, domain and enterprise. 
In [1] the author John McHugh gives this approach a 
very high hope. Despite its ability to assimilate and 
correlate trails, and the potential to discover coordinated 
or distributed intrusions in a large loosely coupled 
enterprise network, the complexity involved to define 
and administrate the recorded data is relatively high. 
Perhaps we can try to look at the problem from a 
different perspective: instead of detecting intrusions from 
user behaviours, detect them from system behaviours. In 
1995, Stat Transition Analysis Tool (STAT) has been 
proposed in [2]. In their UNIX prototype of STAT 
(USTAT), it collects audit trails from UNIX system calls. 
Later in 1998, Steven A. Hofmeyr el al in [3] proposed a 
way to apply anomaly-based intrusion detection 
approach using system calls as audit trails, too. Both 
have experimented the feasibility with their prototype 
system, and suggest the possibility of positioning an 
intrusion detection system at the operating system level. 

In this paper, section 2 briefly talks about the 
general intrusion detection approaches used in various 
implementations. Section 3 describes into details how 
these approaches can be achieved at operating system 
level. The difficulties and problems are addressed in 
section 4. Section 5 summaries the paper and gives how 
this approach can help in intrusion detection. 

 
2. Background 

 
In order to surveillance user activities, their 

resultant events are necessarily recorded by applications 
such as apache web server, ftp daemon, secured shell 
login server… etc, and parts of the operating system for 
events like “file not found”, “insufficient permission”, 
“I/O error” and many other low level error messages. 
Most host-based intrusion detection systems obtain audit 



trails from a logging facility, like the syslogd which 
collects data from various sources including the ones 
mentioned above. However many question about logging 
remains unanswered. For example what kind of events 
should be recorded? How much detail will be enough? 
These two questions will determine the quantity and 
quality of the logged data, therefore have a direct 
influence to the discriminability of an intrusion detection 
system. How the logged information will be used 
suggests a better and more efficient format of logged 
data and logging interface. With a standard format it is 
possible to optimise for better efficiency and portability 
across different areas in the system. A standard interface 
encourages programmers to utilize the logging facility 
and hence enhances the sensitivity of the intrusion 
detection system. Although it may be easy to unify the 
interface to the logging facility, standardizing the format 
is non-trivial due to the wide varieties of purposes from 
applications and portions of system it covers. 

Many intrusion detection systems have already 
existed for years. Based on the way they detect intrusions, 
we can generalize them into two main abstract categories: 
anomaly-based detection and misuse-based detection. 
From there we can further divide, depending on their 
distinctive approaches to the problem in practice. 
However none of the approaches alone is sufficient to 
detect all intrusions. Thus a typical intrusion detection 
system employs several different approaches to 
overcome the particular weakness in each one. 

 
2.1 Anomaly-based detection 

 
Based on the assumption that an intrusion must 

differ from normal activities, anomaly-based detection 
observes the difference between a given activity and a set 
of normal activities. Such detection tries to characterize 
an activity as normal through a set of profiles, which are 
characterizations of acceptable behaviours. The idea 
came with long history and was well adopted in the 
earlier intrusion detection systems. 

Depending on the definition of acceptable 
behaviours, there are several distinctive detections. These 
include using summary statistics and rules about 
behaviours. Summary statistics defines a threshold and 
counts the occurrence of events. If an event observed has 
an abnormal rate of occurrence, it is believed to be 
abnormal and is causing concerns. Defining rules about 
acceptable behaviours is not only troublesome but 
difficult to conduct as well. It will require training data, 
which leads to another area of research. Such difficulties 
include comprehensiveness and correctness of data. 
Training data has to be comprehensive in order to cover 
all the normal behaviours. Failing to do so will cause 
some activities being identified as an intrusion, resulting 
in false alarms or false positives. The correctness of 
training data is essential because it is the only reference 
to determine an intrusion. If the correctness of training 
data is not guaranteed, then an intrusive activity may be 
classified as normal, creating false negatives. 

Another assumption people usually make with 
anomaly-based detection is that the more different 
something is away from normal, the more likely an 
intrusion it is. However, except the case of summary 

statistics, it is often difficult to design a reasonable 
measure to determine the magnitude of anomaly and 
prove the reliability of the measure, thus difficult to 
implement in practice. 

The advantage of anomaly-based detection lies on 
the ability to point out novel intrusions. However the 
necessity of training data pulls the performance of 
anomaly-based detection away from ideal. 
Anomaly-based detection usually has little information 
about an intrusion and can hardly counter-act as a 
response upon discovery of any intrusion. 

Multics Intrusion Detection and Alerting System 
(MIDAS) and Network Anomaly Detection and Intrusion 
Report (NADIR) employ summary statistics in their 
anomaly-based detection. Intrusion Detection Expert 
System (IDES) and Wisdom and Sense (W&S) use 
rule-based anomaly detection approach as part of their 
detection. 

 
2.2 Misuse-based detection 

 
Instead of defining what normal is, another natural 

approach is to have an expert system and define what 
intrusions are. Misuse-based detection typically consists 
of a collection of patterns from all known intrusive 
activities. The exact method ranges from simple pattern 
matching to higher level of intrusion scenario models. 

Pattern matching is commonly used in 
network-based detection. It identifies an intrusion by 
looking for particular signatures in audit trails. However 
derivative of intrusions can easily bypass this kind of 
detection with a slight modification. To address this type 
of issues, some intrusion detection systems introduce an 
abstract model to represent an intrusion scenario. This 
kind of intrusion detection is also known model-based 
detection. Since a model-based detection describes 
intrusion scenarios, it is considered under the generality 
of misuse-based detection approach. An intrusion 
scenario may consist of many steps. If the intrusion 
detection system is well aware of the steps required 
towards the success of an intrusion, it can prevent an 
intrusion from succeeding the next step upon detection 
and confirmation. 

 Misuse-based detection provides a strong 
indication of any possible intrusion. Another reason why 
many intrusion detection systems incorporate this as part 
of their detection scheme is the detailed information if 
has about the detected intrusion. Using misuse-based 
detection it is easy to provide a scenario with name and 
description, aiding the security officer or even the 
intrusion detection system itself to take the appropriate 
action against the attack. As the concept of misuse-based 
detection suggests, it can only reliably detect known 
intrusions. Although derivatives may be picked up by 
proper definition of intrusion, the general principle does 
not apply to novel intrusions. 

NADIR, IDES and W&S all use misuse-based 
detection as part of their detection scheme. In fact these 
intrusion detection systems use a combination of 
anomaly-based and misuse-based approaches to 
complement the weakness in one another. 

 



3. Approaches using system calls 
 
A computer program is a set of instructions 

describing how a task is performed. Unlike humans, 
these programs are expected to be stable. Being stable 
we mean given the any input, the produced result will 
always be the same, due to the identical execution path in 
the process. In contrast, humans tend to do the same 
thing differently from time to time, which makes 
defining normal behaviours relatively difficult. Based on 
this idea, if an intrusion detection system examines the 
behaviour of a process (which is a running copy of a 
program), it can detect intrusions with better precision 
and distinguish between normal and anomaly with 
reduced fuzziness. 

The thought of using system calls as audit records 
has been there for long. At the advantageous side it 
addresses most of problems of defining a good logging 
facility. For example, the linux kernel of version 2.4.20 
uses 252 system calls. Although the exact number varies 
from one operating system to another, the number of 
system calls is finite. In fact, we will only be interested 
in a subset of system calls, which have an direct 
influence to security, such as create, read, write, execute, 
change permission, change ownership… etc. Thus it 
simplifies the choice of events to record. Detail level is 
limited to the parameters passed into the call. The format 
is consistent. In fact, all the system calls are accessed 
with the same interface deep inside the kernel. 

In the modern design of operating system, the 
kernel is usually modular. The trend has evolved from 
earliest monopoly, where everything is compiled as a 
whole, to modular and micro kernel. The latter produces 
a much smaller consisting of essential functionalities and 
benefits from a reduced loading time less required 
storage, and dynamic extensibility of functionality. A 
module can be attached and detached from the kernel and 
thus can be later loaded from a separate storage. 
However it is the extensibility that benefits this approach 
of intrusion detection most. An auditing module can be 
written as an extension to the kernel and provide the 
intrusion detection system the data it needs. Since this 
module is part of the kernel, it can access essential 
information in the operating system easily, allowing an 
intrusion detection system to capture events in the 
system resulted from any process. 

Once an intrusion detection system has identified an 
intrusion, it may decide to counter-act against that 
particular intrusion scenario. At this moment it may 
suggest that the next essential system call in the intrusion 
scenario shall fail. In this case the module will have to 
block the system calls and deny calls from particular 
process. Undoubtedly in the benefit of added 
functionality, this pays a price of increased complexity. 

Not all detections mentioned in the previous section 
work well with this approach. Summary statistics 
anomaly-based detection for example, may fail miserably 
if one simply records the occurrence of a particular 
system call without considering the context. Recording 
the occurrence of sequences of system call leads to a 
large number of possible combinations, such as 4010 with 
sequences of length 10. To monitor different processes 
one must have multiple copies of these counters. Another 

problem arises when trying to define a threshold for a 
particular (sequence of) system call. How many times 
read() are called in one minute can be considered as 
abnormal? It could well be a database server trying to 
answer hundreds of queries simultaneously during the 
peak hour. There is little to claim when looking at the 
frequency that a particular system call occurs. 

 
3.1 Profile-based Anomaly Detection 

 
In 1998 an anomaly-based detection approach using 

sequences of system calls has been proposed in [3]. They 
define normal as short sequences of system calls. The 
parameters passed to system calls are omitted for 
simplicity. The detection consists of two main stages: 
profiling normal behaviours and detecting anomalies. In 
the profiling stage, training data is collected. This data is 
then used in the detecting stage. 

To evaluate the feasibility, it tests the approach with 
both synthetic data and real data. The experiment with 
real data focuses with lpr, a popular printing service in 
UNIX and is conducted at both Massachusetts Institute 
of Technology’s Artificial Intelligence laboratory and 
University of New Mexico’s Computer Science 
Department. Hence there are different environments to 
be able to compare against. The expected rate of false 
alarms is very impressive, about 1%, calculated using the 
bootstrap technique. Although the experiment is not very 
comprehensive, the extremely low false alarm rate 
suggests this approach to be very accurate in detecting 
anomalies. 

The following sub-sections describe the main ideas 
of the procedures. For more detailed information 
especially on the setting and condition of their 
experiments, readers are suggested to read [3]. 

 
3.1.1 Profiling normal behaviours 

 
Since this approach uses short sequences of system 

calls to define normal behaviours, the purpose of 
establishing profiles is simply to gather all possible 
sequences of system calls that a process can generate. 
However in [3] they make a important claim: 

 
“We make a clear distinction here between 

normal and legal behavior … because our 
approach is based upon the assumption that 
normal behavior forms only a subset of the 
possible legal execution paths through a program, 
and unusual behavior that deviates from these 
normal paths signifies an intrusion or some other 
undesirable condition. We want to be able to 
detect not only intrusions, but also unusual 
conditions that are indicative of system 
problems.” 

 
It is natural to expect a small number of distinctive 

execution paths from a process in its normal operating 
conditions. These execution paths result in constant 
sequences of system calls, which can be used to 
determine normal. In here, they scan traces of system 
calls and obtain sequences from several executions. Each 
sequence is broken into several smaller sub-sequences 



with constant length. Figure 1 illustrates an example of 
sequences of length 3. 

 

Figure 1: sequences of 3 system calls 
 
The idea is simply that in order to allow this long 

sequence, each sub-sequence must also be allowed. 
Notice the last sub-sequence is identical as sub-sequence 
#1 and hence not added. It is meaningless to allow 
duplications of the same sub-sequence in the database. 
These sub-sequences form the database of normal. They 
are used as the reference to determine unusual 
behaviours. In section 3.1, we refer k as the length of 
each sub-sequence. Although there is not much 
restriction to the choice of k, it should be neither too 
small nor too large. If k is too small, the sequence will 
fail to capture distinctive features of a process, causing a 
majority of activities to be covered, hence false negatives. 
If k is too large, each sequence becomes too specific 
such that an execution path may have different sequences 
under slightly different condition. It becomes difficult to 
comprehend the domain of normal, and introduces false 
positives or false alarms. The size of database is O(nk), 
where n is the number of distinctive sub-sequences. In 
Figure 1, n=4 and k=3. Because each system call will be 
looked up in the database, it is desirable to arrange in a 
tree and use as a dictionary. This will not only save the 
storage, but speed up the look up process as well. 

After the structure of the profile is defined, here 
comes the inevitable – collection of training data. In [3] 
there is an in-depth discussion on the synthetic data. 
Since earlier in this section we have claimed that the 
purpose is to pick up abnormal rather than illegal 
behaviours, synthetic data only becomes interesting 
when experimenting with the feasibility and performance. 
Strictly speaking, real data is easy to obtain. Simply turn 
on the monitor and at the end of day you have a 
truckload of data. However it is the quality of data that is 
difficult to maintain. Imagine that during the training 
process, someone deliberately feeds the system with 
intrusions. Because it is only collecting data, the 
intrusion detection system is not operational at this stage 
to pick up these intrusions. Once the training is done, 
such intrusions will be matched as normal and accepted 
happily by the intrusion detection system, resulting in 
false negatives. The comprehensiveness of training data 
is another important consideration. If the training fails to 
include a scenario that is occasional but normal, such 
scenario will give rise of false alarms in the future. [3] 

suggests two possible solutions to obtain a high quality 
training data: 

 
“Collect normal in the real, open 

environment, whilst monitoring the environment 
very carefully to ensure that no intrusions have 
happened during our collection of normal.” 

 
“Collect normal in an isolated environment 

where we are sure no intrusions can happen.” 
 
The problem with the second approach is obvious. 

An isolated environment may not represent the real 
environment faithfully. Although it is guaranteed to be 
intrusion free, the lack of completeness gives a higher 
false alarm rate. The first approach requires either 
experts to examine the log or a security officer to 
surveillance user activities during the training period. 
Still, it is both time consuming and subject to 
human-errors. In [3] they use this approach of 
monitoring user activities to gather the necessary training 
data for testing and evaluation. 

 
3.1.2 Detecting anomalies 

 
With a database of normal ready, an intrusion 

detection system can then compare a sequence of system 
calls captured against these profiles. Of course, the 
sequence captured will be broken into parts of length k 
before comparison. If a match is found, then this process 
is considered to be normal so far. When there is no match 
to the captured sequence, we would like to establish 
some method of telling the level of suspicion. 

Defining a proper measure of difference is 
non-trivial. This indication should reflect to the logical 
difference from the most similar sequence and suggest 
the possibility of being an intrusion. The Hamming 
distance is chosen in [3] to be the measurement of 
difference between two sequences. Simply put, it is the 
number of mismatched locations. Since the sequence is 
of length k, this measurement produces a number 
between 0 and k inclusively. It is difficult to justify 
whether this is a proper measurement. In fact, there is no 
proof of the righteousness of this measurement. However 
it is meaningful to some extend and allows us to peek the 
difference in a measurable way. Until we find another 
finer measurement, the Hamming distance is used for 
now. Figure 2 shows a simple Hamming distance 
measurement. 

 
Figure 2: Hamming distance 

 
Computing whether or not a sequence is normal is 

open, read, mmap, mmap, open, read mmap 

#1 

#2 

#3 

#1: open, read, mmap 
#2: read mmap, mmap 
#3: mmap, mmap, open 
#4: mmap, open, read 

open, read, mmap, mmap 

mmap, read, close, mmap 

2 mismatches 
Thus Hamming distance d = 2. 



relatively cheap. If a tree structure is used in the database, 
the worse case of finding a match (or mismatch) is 
number of system calls N× k comparisons. However 
since we describe the magnitude of anomaly by the 
difference from the most similar normal behaviour, for 
each captured sub-sequence we need to break into 
sub-sequences of length k, compare against each 
sequence in the database and obtain the smallest 
difference measured by the Hamming distance. This is 
equivalent as determining the minimum value across 
comparison against each normal sequence. The strongest 
indication in these sub-sequences represents the degree 
of anomaly. In [3], this value is referred as the signal of 
anomaly, SA. 

 
Let X be the set of sub-sequences of system calls 
captured by the system in a particular process. 
Let Y be the set of sub-sequences of system calls 
defined in the database. 
Let d(x,y) denote the Hamming distance between 
two sequences x and y, then: 

 
SA = ∀ x∈X: max(∀ y∈Y: min( d(x,y) ) ) 
 
Up to this moment, all the measurements are 

dependent to k, the length of each sequence in the 
database. Undoubtedly the number of mismatches will 
increase, as k becomes larger. This restricts us to make 
comparisons within the same value of k. In order to have 
a measurement independent to the length of sequence k, 
the mismatch percentage is introduced. Let’s call it S, 
which is simply SA / k. 

 
S = SA / k 
 
Now we have the signal of anomaly. We can define 

a threshold to discriminate anomalies from normal. Let’s 
use C to denote the threshold in detecting anomaly, 
where 1 ≤  C ≤  k. Notice we define C as an integer 
since it is mainly used in the detection, where the 
database consists of sequences of fixed length k. 
Therefore we can check SA against C in a faster integer 
operations. We could use C as a mismatch percentage, 
but it will require a division to be performed for every S 
= SA / k. By definition, a process is considered to be 
abnormal when SA ≥  C. C = 0 is meaningless, and 
hence C is bounded by 1 and k. Therefore we have the 
following two cases. 

 
Normal: 0 ≤  SA < C ≤  k 
Abnormal: 1 ≤  C ≤  SA ≤  k 
 
Is this discrimination powerful enough? Perhaps not 

for human behaviours which migrate and deviate all the 
time. But for a hard-coded program its behaviour is 
limited in general and can hardly change. The 
environment and runtime conditions may steer the exact 
execution path in a process, however these execution 
paths are usually finite and we are capable of 
enumerating each one of them under common conditions. 
On the bright side, this approach is able to pinpoint the 
source process of an intrusion accurately. One very 

effective use of this approach is the detection against 
buffer-overflow attacks. This type of intrusions 
introduces new code and hence new behaviours to be 
picked up. Unfortunately as all anomaly-based detections 
suffer from, this approach can hardly tell the type of 
intrusion upon any successful detection. The introduction 
of system calls complicates the reasoning of an intrusion. 
Imagine a security officer facing a bunch of system calls 
such as open, read, read, mmap. Security officers may 
have the source of intrusion, however they have to 
investigate before knowing what is going on. For 
example, a buffer-overflow attack may have taken place 
in an http server. The security officers are informed but 
have no idea whether this intrusion is a buffer-overflow 
attack or not. They have to investigate this http server 
before they can conclude that it is a buffer-overflow 
attack on the http server. 

 
3.2 State Transition Analysis Tool 

 
State Transition Analysis Tool uses a misuse-based 

detection approach to model an intrusion scenario. It 
breaks down an intrusion scenario into many states. The 
initial state is the system state prior to an intrusion and 
the compromise state is the state after a successful 
intrusion has taken place. Between two states there is an 
action which causes the change of system state from one 
to another. There must exist a sequence of states, from 
the initial to the compromised, where the system meets 
the initial state and the action in between is each 
successful in order for the intrusion scenario to succeed. 
Together these form a State Transition Diagram that is 
used to describe an intrusion scenario. In the paper [2] 
they use the term penetration as a successful intrusion 
scenario. 

Based on the use of states to describe a scenario, 
STAT makes the assumption of following two features in 
all penetrations, quoted directly from [2]. 

 
“Penetrations require the attacker to posses 

some minimum prerequisite access to the target 
system.” 

 
“All penetrations lead to the acquisition of 

some previously unheld ability.” 
 
The first feature supports the idea of identifying the 

requirement, which is the initial state. The second feature 
suggests that there is a difference between the initial state 
and the compromised state, and hence detectable. After 
seeing a scenario as a whole, STAT begins to break it 
into critical steps. Essential states throughout the 
scenario are identified and the action responsible for 
state change is determined. 

One of the main advantages of STAT is the use of 
State Transition Diagram to model an intrusion scenario. 
This presents the scenario in a visualizing manner, hence 
provides better understanding and analysis. Such a model 
makes STAT a misuse-based detection that deviates from 
traditional one-to-one direct and static relationship 
between rules and audit trails. The model may be static 
but the actual subjects, for example the particular file 
under attack, can be determined dynamically and applied 



to the general model. One model can thus be used to 
monitor multiple instances of an intrusion simultaneously, 
e.g. multiple attacks on several “SUIDROOT” files 
based on using the same trick of buffer-overflow. The 
updating of database in a rule-based detection often 
requires experienced technicians to plug in the new 
formula. Whereas with STAT, local security officers can 
study, draw the diagram and analyse new intrusion 
scenarios. Once the description boils down to a set of 
requirements and effects, essential actions can be 
determined and this information can be taken into STAT. 
Thus a methodology is available for creating new rules in 
STAT. 

 
3.2.1 State Transition Diagrams 

 
STAT uses State Transition Diagrams to describe an 

intrusion scenario in an abstract but precise and 
visualizing manner. These diagrams reflect to the 
essential concepts of STAT. Its visual representation 
provides better understanding, clear requirement and 
consequence of an intrusion scenario. Based on this 
information, STAT has the ability to prevent an attacker 
advancing towards a successful penetration. 

A State Transition Diagram usually begins with only 
two or a few more states. The initial state corresponds to 
the requirements of the intrusion scenario. The 
compromised state represents the effect on the system 
once the intrusion has succeeded. Each state is 
considered as a node in a directed graph. An action is 
responsible for transition between states, i.e. a change of 
state. In a directed graph, actions are drawn as edges 
linking states. Refined with details, this directed graph 
becomes a State Transition Diagram. On page 6 of [2] 
there is an example of an attack taking advantage of the 
fact that this earlier mail program changes the ownership 
of the mailbox file (/usr/spool/mail/root in this example) 
without checking whether the file has set user id 
permission enabled. If an attacker can write in this 
directory (/usr/spool/mail), he/she can fabricate 
/usr/spool/mail/root by copying a shell program. When 
an e-mail is sent to the user root, mail realizes a mailbox 
already exists but with a wrong owner. It changes the 
owner to the recipient which is root and appends the new 
mail. The attacker will then have a shell that has root 
privilege upon execution. Figure 3 from [2] clearly 
illustrates this example in a State Transition Diagram. 

 

 
Figure 3: An example of State Transition Diagram. 

 
For an intrusion to succeed, the initial state (i.e. the 

requirements) must be met. Then, there must be a path 
from the initial state to the compromised state, where 

each edge corresponds to a feasible action. The length of 
the path gives some indication about the complexity of 
the intrusion. The more complex an intrusion is, the more 
chances it can fail. A short path would suggest an 
immediate threat since we have a very limited possibility 
of stopping it. In the previous example there are only 4 
states and 3 actions. If the initial state is met, an intrusion 
can advance to the next state SC-2 leaving us only two 
more actions where we can prevent this intrusion from 
being successful. Sometimes a scenario may consist of 
several alternatives, resulting in multiple paths from the 
initial state to the compromised state. For example there 
may be two system states in the intrusion scenario A and 
B, where the order is irrelevant. As shown in Figure 4, 
we can make each branch a separate scenario. Thus we 
can now safely consider diagrams with only a single 
path. 

 

Figure 4: Separated paths for branches. 
 
In order to optimise the use of STAT to catch 

mutants of a known intrusion, the State Transition 
Diagram should only describe the essential states. In this 
example how the attack creates the e-mail can vary. The 
process of creation of e-mail does not cause any threat to 
the system. Thus a proper diagram should not introduce 
additional states to model this process. 

 
4. Discussion 

 
Working with audit trails directly from system level 

has its pros and cons. We first look at the possible 
problems and then discuss about the benefits and 
limitation. 

 
4.1 Problems with System Calls 

 
With this approach we have to be very careful since 

it introduces many operating system or architecture 
specific problems, such as reduced system performance, 
compatibility, monitoring of states and race conditions. 
Each is discussed in more detail in the following. 

 
4.1.1 Reduced System Performance 

 
One obvious problem is the impact on system 
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performance. Almost all processes make system calls in 
their lifecycle. Common program behaviours like reading 
a file or creating a process involve open, read, fork and 
other system calls. The module that collects trails 
introduces additional overheads in the handling of 
system calls, causing system calls to return slower and 
thus a reduced system performance. 

For a better security it may be desirable to block the 
process, let the intrusion detection system inspect the 
current system call and decide whether it should be 
allowed to execute. The “Janus” system in Tal 
Garfinkel’s paper [4] is an example of such. If we intend 
to block these system calls, then a process that uses 
system calls may have to halt before a decision from 
intrusion detection system is made. This phenomenon 
can quickly become very serious when frequent system 
calls are made, such as a database manager with frequent 
reading and seeking in large files. 

As a result, the impact on system performance may 
indicate an exclusion of I/O intensive applications such 
as SQL database and http server from this approach. 

 
4.1.2 Compatibility 

 
Here the compatibility means whether an existing 

intrusion detection system will still work under different 
conditions. There are two aspects I focus on: across 
different operating systems, and across different 
versions.  

We have seen so far many common system calls 
typically used in a UNIX operating system. Many of the 
UNIX clones share similar properties and interface, thus 
makes the porting of an implementation from one 
operating system to another a lot easier. However the 
kernel module involved severely reduces the 
compatibility of this approach. For each different kernel 
architecture, a specific module has to be written in order 
to collect the trails. Some operating system has quite a 
significant difference between major versions, such as 
Linux. Although this dependency on kernel architecture 
results a poor compatibility, the variety of server 
platforms is much less. It is possible to select few 
popular solutions to build the implementation based on. 

Once a while software vendors release an update or 
a patch to fix known bugs in their product. Vendors will 
strongly encourage their users to update if there is a 
security fix against any flaw. Once a program is updated, 
new behaviours may be introduced and exhibited at 
runtime. At this point it may require training data to be 
collected again, since the old profile can no longer be 
used to describe the new behaviours. Or even worse, the 
difference may be initially unnoticeable when someone 
has experimented a little with the old profile. Based on 
that observation, system administrators and security 
officers may decide to not to go through the collection of 
training data again and reuse the old profile. When false 
positives occur due to the introduction of new code, they 
end up spending more frustrating time analysing. The 
collection of training data is always time-consuming and 
painful but unfortunately a necessary procedure. In order 
for this approach to be practical in general, the inevitable 
collection of training data must be able to be done in a 
cheaper, more efficient manner. 

 
4.1.2 Monitoring of State 

 
A very famous phrase in UNIX is “there is more 

than one way to do things.” Indeed in UNIX, many 
distinct sequences of actions can be used to achieve the 
same goal. This holds particularly true for intrusion 
scenarios. 

Recall that this approach mainly uses sequences of 
system calls in order to detect an intrusion. The 
sequences of system calls are generated as the attacker 
performs sequences of actions. Although we are 
seemingly capturing these actions, the ultimate goal is to 
reconstruct the system state, so that we know how far an 
attacker has progressed in the intrusion scenario. Actions 
provide a clue, not the solution. It is important to capture 
all actions that can influence the system state. Therefore 
the coverage of system calls to capture should be 
carefully considered. 

A very clear example is given in [4]. In most 
operating system, files are handled through a table of 
descriptions. When a file is opened, its details such as 
path, size, permission and ownership are recorded in an 
entry of the table. The entry number is returned as a file 
descriptor and used as the key for later access by 
programs. dup2(a,b) is a function that duplicates entry a 
to entry b. If the intrusion detection system fails to 
capture the effects on this function, it is not monitoring 
the system state correctly. The example of intrusion in 
the mail program is modelled efficiently in STAT[2]. 
Suppose that it includes a verbose check of writing to file 
/usr/spool/mail/root. An attacker can go around that step 
of detection if dup2() is not captured. 

 

5 = open( “/usr/spool/mail/root”, … ) 
The attacker opens the 
sensitive file, captured 
and monitored by IDS. 

6 = open( “/tmp/legalfile”,.. ) 
The attacker opens another 
file captured but not 
monitored by IDS. 

dup2(5, 6) 
IDS has no idea of the duplication of file 
descriptor so that both 5 and 6 are now for 
/usr/spool/mail/root. 

write(6, ….) 
IDS believes the attacker is writing to the 
file /tmp/legalfile, while 
/usr/spool/mail/root is actually written. 

 
As a result, STAT will believe that the file 

/usr/spool/mail/root is never written and thus fail to 
detect this attack. 

Similar problems arise when handling paths and 
links carelessly. In many operating systems, both 
absolute and relative paths are commonly used. It is 
crucial to determine the correct entity in order to conduct 
a correct detection. Links need to be taken care of too, 
since it provides an alternative mean to access files 
indirectly. 

 
4.1.3 Race Condition 

 
There are situations where the intrusion detection 



system needs to perform a counteraction based on a 
detection of vulnerability. Since the main body of an 
intrusion detection system resides in user space, a 
context-switch may occur and the execution is passed on 
to another process. At this moment, the executed process 
may be able to take advantage of the vulnerability while 
the intrusion detection system is in dormancy. For 
example, considering the apache web server. It allows 
administrator to specify a plain text file containing the 
login and password for accessing a specific directory. 
Suppose it is configured that if the login/password file 
“passwd “exists in a directory, the server allows only 
those with login name and password in this file to enter. 
If the administrator carelessly produces this file without 
setting the permission first, it may be set to default which 
is readable by everyone. Now the intrusion detection 
system detects an intrusion of “passwd” being world 
readable. It immediately fires a counteraction to correct 
the permission. However a context-switch may occur in 
this gap and cause this counteraction to be suspended. 
The file remains world readable, and the process that just 
gets executed can read everyone’s login and password. 

Race condition gets worse when multiple threads 
are involved. Since a thread is a lightweight copy of 
process, a lot of properties are shared between threads of 
the same group. For example two threads of the same 
program share the same working directory, thus if thread 
A changes the current directory to /tmp, thread B will be 
working relative to /tmp as well. This introduces another 
example of race condition as given in section 4.3.4 in [4]. 
However I question the validity of this example since 
like all intrusion detection system should be, Janus is 
supposed to add another layer of security, not replacing 
existing mechanism. The file /etc/shadow contains all 
encrypted passwords and is usually readable and writable 
only to root in most UNIX systems. Therefore 
/etc/shadow should remain unreadable since the call to 
open() will cause a security violation in the operating 
system. The approval of Janus should not override the 
underlying security mechanism in the operating system. 

 
4.2 Strength 

 
Operating intrusion detection system at system level 

has several benefits. First it is more reliable, since 
instead of observing human behaviours, process 
behaviours are being monitored. Second it is more 
applicable to low-end computer systems. STAT relies 
heavily on system calls to indicate a change of state and 
has many advantages compared to other misuse-based 
detection approaches. 

Taking advantage of the stability in program 
behaviours, the anomaly-based intrusion detection shows 
a relatively low rate of false alarms and thus more 
reliable. It also enables us to define a rough measure to 
determine the extend of anomaly. The result in the 
experiment of [3] is very successful. The false positive 
they observed is estimated one out of a hundred. 
However this may still be insufficient to prove the 
effectiveness of this approach, especially in situation 
where the system is under extreme stress, causing 
exceptional conditions and behaviours. 

This approach collects audit trails from operating 

system. It applies to all processes without having each 
process being specifically designed to give the required 
information. Therefore it is more practical for a 
host-based solution of intrusion detection system. This is 
favours many of low-end computer systems because 
buying software designed to feature a particular logging 
interface is then unnecessary. Imagine the need of 
spending $10,000 more so that your SQL database 
supports the logging facility of EMERALD. 

STAT benefits a lot from using system calls. Not 
only it can detect multiple instances of the same intrusion 
scenario, using system calls enables it to detect intrusions 
through collaboration and multiple sessions. 
Collaboration can be picked up, since STAT concerns 
only about the system state. Because each process has 
the ability to alter the system state in some way, STAT 
does not distinguish between processes in particular. 
Thus its intrusion scenario is applicable to detect 
intrusions across multiple processes. It is applicable to 
detect across multiple sessions, too. Since the system 
state remains after one session ends, coordinating an 
attack across several sessions makes no difference in 
detecting. More ever, STAT contains the sequence of 
actions about an intrusion scenario. It can issue a 
response to an ongoing intrusion and effectively prevent 
the system from being compromised. 

 
4.3 Limitation 

 
While this approach opens its favourite area in 

intrusion detection, it is also limited by the nature of its 
audit trails – system calls. The limitation is mainly due to 
the lack of high-level information. 

First it gives very little information about the 
attacker. For example if an anomaly-based detection 
found an attempt of buffer-overflow attack, it still has no 
idea where the source of the attack is based on the audit 
trails it collects. The information is simply not at the 
same level. 

Many attacks visible in human behaviours cannot be 
picked up. For example it cannot detect a masquerader, 
who pretends to be another person. Nor can it detect the 
leakage by legitimate user, described in [1]. 

 
5. Conclusion 

 
Intrusion detection system at operating system level 

is definite a feasible solution. As we have already seen, it 
has the benefit of being very reliable, effective and 
efficient in detecting its domain of intrusions. Intrusion 
detection systems such as STAT are developed based on 
this approach and exhibits several significant advantages. 
By adopting this approach the anomaly-based rule-based 
detection in [3] also shows an impressive low rate of 
false positives. The significance of this approach is 
unquestionable. 

 
“No intrusion detection approach stands alone as a 

catch-all for computer penetrations.” 
 
This phrase is quoted from [2] and expresses the 

heart of this paper brilliantly. Once outside the domain of 
this approach, it is hardly useful at all. As discussed in 



section 4.3, it cannot detect possible intrusions in many 
human behaviours. Even if an intrusion is detected, there 
is little high-level information that can help us to 
understand about the situation. 

Nevertheless each approach has its advantages and 
disadvantages. More importantly there are situations 
where one is more preferable than another. It is therefore 
approaches from different angles need to be studied in 
order to complement the weakness found in others. As 
John McHugh suggests in his writing [1], intrusion 
detection systems should collect audit trials from 
different hierarchical levels, providing ability to “collect, 
assimilate, correlate, and analyze information emanating 
from diverse sources in real-time” in order to cope with 
more sophisticated attacks. 
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